RECOGNISING AND RESPONDING TO CLINICAL DETERIORATION

AIM
To enhance patient outcomes through improved recognition of abnormal vital signs and potential clinical deterioration, and ensuring a timely response to clinical deterioration.

BACKGROUND
Research indicates that signs of clinical and physiological instability often precede a cardio-respiratory arrest. In many cases these events may be prevented if the cause of deterioration is recognised early and acted on before the patient deteriorates beyond the point of reversibility.1

In early stages of deterioration there are often important clinical changes in respiratory rate, oxygen saturation, blood pressure, heart rate, temperature and conscious/mental status which may go unrecognised. A ‘track and trigger’ system that ‘tracks’ the measurement of vital signs and ‘triggers’ a predetermined response of intervention/review has been shown to help trap and/or avoid deterioration early and help mitigate deterioration by initiating an early response.1

KEY POINTS

RECORDING VITAL SIGNS AND RECOGNISING DETERIORATION

The six core physiological (and the minimum) vital signs to be recorded are respiratory rate, oxygen saturations, blood pressure, heart rate, temperature, and level of consciousness. Obstetric patients will also require fetal heart rate, fetal movement, uterine activity and PV loss (antenatal), and lochia (PV loss) and fundal tone/position (postnatal) as per clinical guidelines.2

Urine output and pain should also be assessed regularly. Blood glucose level, and urinalysis may also be indicated as per the patient condition.2

The six core physiological vital signs should be documented on all patients at the following times:
- At the time of admission or initial assessment
- Prior to intra and interhospital transfer
- Observations must be taken at least every 8 hours (3 times a day)
 - The exceptions are postnatal women following vaginal birth with uncomplicated pregnancy, admission observations within normal limits, who have no co-morbidities, and remain stable should have observations as per clinical guidelines for routine post-partum care OR patients on an end of life pathway
- Post vaginal birth as per clinical pathway
- Postoperatively as per guidelines:
Caesarean Section Obstetrics and Midwifery: Post-Operative Care
Minor Gynaecology Gynaecology: Care following Gynaecology, Oncology, Urogynaecology Minor Surgery

- Minimum of 4 hourly for 48 hours on any Gynaecology patient admitted from the Emergency Department or admitted from the Adult Special Care Unit (ASCU).
- Minimum of 4 hourly for 24 hours on any obstetric patient admitted from Maternal Fetal Assessment Unit (MFAU), or transferred from ASCU.
- As per WA Adult Observation and Response Chart MR285.02 (A-ORC), or Maternal Observation and Response Chart MR 285.01 (M-ORC), escalation actions.
- As per standard operating procedures (eg. Blood transfusion, PCIA/PCEA Management, epidural infusions, IV opioid infusions).
- Prior to administration of medications that will directly affect the vital signs (eg. antihypertensives, digoxin, adenosine, GTN, etc.)
- Following administration of an opioid other than those listed above.
- If a single parameter is rechecked to assess the effect of an intervention (ie oxygen saturation if oxygen has been applied; temperature if paracetamol has been administered), a full set of core physiological vital signs should be completed within 30 minutes.

In some clinical circumstances more frequent observations will be appropriate and this should be documented on the care plan. A manual blood pressure reading should be obtained if an automated blood pressure reading is outside of the patient’s normal range (high or low), or if the patient has an irregular heart rate. A patient with a new irregular heart rate should also have a 12 lead ECG taken. For patients on frequent observations (eg, following escalation and increased observation frequency), temperature measurement with each set of vital signs may not be required. For patients not on clinical pathways, the frequency of observations should be documented on the patients individual care plan. All patients transferring to another ward, department or facility must have a baseline set of vital signs attended before transfer.

Intra-hospital and inter-hospital escorting of patients:
- A Registered Nurse/Midwife shall escort all patients with vital signs in the Yellow / Increased Surveillance and Orange Shift Co-ordinator Review section of the observation chart
- A Medical Officer and Registered Nurse/Midwife should escort all patients that have vital signs in the Red/Medical Review section of the observation chart, or stabilise the patient prior to transfer.
- An Anaesthetist/Anaesthetic Registrar and anaesthetic technician should escort patients that are unstable and have triggered a Code Blue (Purple Area) of the observation chart. See KEMH Clinical Guidelines: O&G Patient Administration: Patient Movement; Transfer of a Critically Unwell Patient and Records to an ICU at Another Hospital.
RESPONDING TO CLINICAL DETERIORATION

If a response criteria is triggered following documentation of the vital signs on the MR 285.01 or MR285.02, the indicated escalation and actions shall occur.

Clinicians must consider the value of information about potential deterioration from the patient, family or carer and respond in an appropriate way to their concerns. If a family member / visitor voices concerns about their perceived deterioration of the patient, the escalation process must occur by contacting the Registrar of the patient’s admitting team.

If observations fall between two different coloured areas, the action required for the highest order response applies. All health practitioners shall use the ISOBAR system to hand over the deteriorating patient. This enables better communication, accountability and responsibility for patient care.³

ASSESSMENT OF THE DETERIORATING PATIENT

The airway, breathing, circulation, disability, exposure (ABCDE) approach is a systematic process that can be applied to the immediate assessment of a patient who HAS signs of life, but requires urgent medical team review, or Code Blue call. The ABCDE approach follows the following format:

AIRWAY
- Is the patient talking?
- Are there abnormal airway sounds eg. wheeze or stridor
- Is the patient able to maintain their own airway, or are airway adjuncts/manoeuvres required
 - Consider suctioning, head tilt, chin lift, nasopharyngeal airway

BREATHING
- Assess respiratory rate, oxygen saturations, chest movement and work of breathing, auscultate lung fields.
 - Consider oxygen therapy, CXR, arterial blood gas, nebulizer.

CIRCULATION
- Assess heart rate and rhythm, blood pressure, patient colour, peripheral perfusion
 - Consider observing for blood or fluid losses, IV access, ECG, medication, capillary refill, urine output, JVP.

DISABILITY
- Assess level of consciousness using the AVPU (Awake, Voice, Pain, Unconscious) scale and determine which level the patient is responding to.
Otherwise, if relevant perform a set of neurological observations, and check pupillary response.

- Check blood glucose level
- Review documentation such as medication chart, IV fluids, patient notes to determine any relevant clinical history.

EXPOSURE

- Assess skin, wounds, temperature, IV sites, any blood loss per vagina / per rectum and IDC to determine if infection is likely.
 - Consider prescribing antibiotics and checking a lactate level

CODE BLUE PROCEDURES WNHS

There are three Code Blues that may be activated within the WNHS. These include a Code Blue Medical, Code Blue Paediatric and Code Blue Caesarean. The responders to each Code Blue vary as the clinical expertise required for each code is different.

All staff within WNHS will be educated about the Code Blue procedures and the Code Blue calling criteria. To activate a Code Blue call, dial 55 and state “Code Blue” then which Code Blue you are activating. Identify your location which includes ward, and room number, your name and role.

CODE BLUE CALLING CRITERIA

Airway: Airway threat, new drop in SaO2 < 84%

Breathing: Respiratory arrest or less than 4/ min or greater than 36/min

Circulation: Cardiac arrest or less than 30/min or greater than 140/min, SBP<90 (A-ORC), SBP <70 (M-ORC)

Other: Seizure, sudden fall in conscious level, you or a family member are worried, medical review not attended.

Fetus: Abnormalities of CTG trace warranting immediate birth such as a prolonged bradycardia, or sinusoidal trace. Cord prolapse, antepartum or intrapartum haemorrhage, you are worried.

Neonate: HR < 60 beats per minute and requiring positive pressure ventilation and CPR, HR < 100 beats per minute and requiring positive pressure ventilation on postnatal ward, SaO2 < 88% in neonate on postnatal ward, plasma glucose level < 2.0, evidence of seizures, elevated respiratory rate > 60 breaths/min, fall in level of consciousness, medical review that has not been attended, airway threat, you or patient’s family member is worried.

Observations: Observations that fall within the purple category of A-ORC MR 285.02 or M-ORC MR 285.01
BASIC LIFE SUPPORT – ADULT

Keywords: BLS, adult resuscitation, DRS ABCD, basic life support

AIMS

- To increase the likelihood of return of spontaneous circulation and successful defibrillation if required.

BACKGROUND INFORMATION

Adult resuscitation steps should be followed according to the Basic Life Support (BLS) Algorithm developed by the Australian Resuscitation Council in 2010. Survival from cardiac arrest is optimised by a sequence of interventions referred to as the “Chain of survival”. The concept includes:

1. Early recognition and calling for help to prevent arrest – up to 80% of patients have been shown to show signs of physiological deterioration prior to cardiac arrest.
2. Early Cardiopulmonary resuscitation – buys time to slow the rate of deterioration of the brain and heart.
3. Early defibrillation - Studies have repeatedly shown the importance of immediate bystander CPR plus defibrillation within 3–5 minutes of collapse to improve survival from sudden VF cardiac arrest. (AHA)
4. Post resuscitation care – targets preserving function, particularly of the heart and brain, and restoring the patient’s quality of life.

PRINCIPLES OF BASIC LIFE SUPPORT

The basic life support algorithm (DRS ABCD) should be followed to preserve / restore life by establishing a clear airway, breathing and circulation in a collapsed patient. It is provided below.
APPLYING THE DR S ABCD ALGORITHM

D – ASSESS FOR DANGER
Assess the area for danger. Danger can include hazards such as electrical cables, furniture, equipment, water, body fluids, and sharps.

R – CHECK FOR RESPONSE
Check the patient for a response. Squeeze the patient’s shoulders firmly and call their name to elicit a response. If the patient is unresponsive, press the emergency bell to summon help.

Basic Life Support - Adult
Clinical Guidelines: Obstetrics & Gynaecology

All guidelines should be read in conjunction with the Disclaimer at the beginning of this section
S – SEND FOR HELP
Send for help by pressing the emergency bell. Once help arrives, ask your colleague to call a Code Blue while you attend to the patient.4

A – AIRWAY
Ensure that the patient is lying on their back. Take adequate precautions in pregnant patients to ensure that aorto-caval compression does not occur by manually displacing the uterus in a left lateral position if you have the personnel to do this. Assess the airway by opening the patients mouth to check for obstruction. Suction the airway with a yankeur suction device if required being careful to suction only within the mouth(under direct vision). Perform a head tilt and chin lift to open the airway. If there is a suspected spinal injury, use a jaw thrust to open the airway instead. If an oropharyngeal airway is available consider inserting it at this point to maintain a patent airway. Ensure that the oropharyngeal airway is sized correctly by checking the length from the level of the incisor to the angle of the jaw.6

B – BREATHING
Look, listen, and feel for normal breathing. This should take < 10 seconds. Ignore agonal gasps, this is not normal breathing. Do not check for a pulse, progress to the next step and commence chest compressions if the patient is not breathing normally and is unresponsive. Later in the resuscitation once there are more responders available, breathing should be provided using a bag and mask, with oxygen flow at 15L / minute. Breathing should be co-ordinated with CPR at a ratio of 30 compressions to 2 breaths. Compressions should be paused for breaths to allow for adequate air entry during BLS. Ideally, one person should hold the mask in place and obtain an adequate seal, while the other ventilates the patient. This would depend on the number of staff available to assist. Observe for rise and fall of the chest to ensure effective ventilations.7

C- CIRCULATION
Commence CPR unless a “Not for CPR order” is in place. Perform external cardiac compressions at a rate of 100 – 120 compressions / minute. If you are a single rescuer, continue CPR until the emergency team arrives. Do not perform mouth to mouth resuscitation or use a pocket mask in the hospital setting. Once help arrives, continue CPR at a ratio of 30 compressions to 2 breaths using a bag and mask. Hands should be positioned in the lower third of the sternum to provide CPR. Use the heel of the hand to compress the chest, elbows should be straight, and the CPR provider should be leaning over the patient. Compress the chest 5-6 cms or 1/3 of the A-P diameter. Ensure that adequate time is allowed for the chest to recoil in between compressions. Change providers every 2 minutes, or if fatigued to ensure effective CPR is provided. Ensure there are minimal interruptions to chest compressions. Reassess patient for signs of returned circulation in 2 minute intervals.8
Ensure that aorto-caval compression is relieved in pregnant patients. This may be achieved by manually displacing the uterus into a left lateral position.9
Alternatively, a left lateral tilt of 15 degrees can be achieved by placing a wedge under the woman’s right hip and buttock. An excessive tilt can cause aorto-caval compression, so this must be avoided in pregnant patients. If the patient is on a soft surface, place a hard board behind their back to facilitate effective compressions. If the patient is on an air mattress, ensure the CPR tab is pulled to deflate it during CPR.

D – DEFIBRILLATION

The WNHS uses automatic, semi-automatic and manual defibrillators. It is important to familiarise yourself with the type of defibrillator used in your clinical area. Basic life support involves the provision of defibrillation using an automatic external defibrillator (AED) or a semi-automatic external defibrillator (SAED) in automatic mode. Rhythm recognition, analysis and manual defibrillation fall within the advanced life support algorithm and are discussed there. All nurses, midwives and medical staff within the WNHS are able to defibrillate a patient using an AED, and for those trained adequately, a SAED. All nursing, midwifery and medical staff must demonstrate competency in basic life support annually. A record of competency is kept on Alesco or Lattice. Manual defibrillation is not within the scope of practice for nurses, midwives or medical staff working outside of the discipline of anaesthesia within WNHS, regardless of previous expertise or skills. Defibrillation provides the best possible chance of survival in patients with pulseless ventricular tachycardia and ventricular fibrillation, therefore defibrillation should occur without delay.

Attach defibrillator pads to patient’s chest as soon as possible. Take care to avoid the nipple, pacemakers, medication patches, ECG cables, dressings, CVC’s and to remove jewellery where possible. Dry the patient’s chest if wet or very sweaty before applying pads. Excessive hair can be removed by applying one set of pads, and
removing them quickly. Apply a clean set to the smooth skin. Ensure CPR continues while pads are being applied. “Roll” pads smoothly onto the skin, ensuring no air is trapped between the skin and the gel pad. See below diagrams for defibrillator pad placement. The cable for the gel pads can be plugged into any defibrillator machine at KEMH. There is no need to remove the pads if changing to a manual machine.

Antero-lateral Pad Placement

Position anterior pad underneath the right clavicle, along the sternal border. Position apex/lateral pad at 4th intercostal space, midaxillary line.

Anterior Posterior Pad Placement

Position anterior pad as for apex pad in antero-lateral diagram. Position posterior pad underneath the scapula on the left side.
Lateral Lateral Pad Placement
Position the middle of the pad at the 4th intercostal space, midaxillary line

Switch defibrillator on. Follow machine prompts. Ensure safety of resuscitation team by instructing staff to “stand clear”, and checking for hazards by performing a “visual sweep” prior to delivering a shock. Oxygen should be kept at least 30 cm away from the patient during defibrillation. The patient should display a physical response such as a “jerking movement” during defibrillation which confirms a shock has been delivered. Once the shock has been delivered, immediately resume CPR as per ALS algorithm or until there are signs of life.11
ADVANCED LIFE SUPPORT

AIM
To guide adult resuscitation management in a consistent way by following the Australian Resuscitation Council Advanced Life Support Algorithm.

DEFINITION
Advanced life support is basic life support with the inclusion of manual defibrillation, advanced airway management, the administration of intravenous fluids and medications as well as a systematic approach to resolving reversible causes of cardiac arrest.

BACKGROUND INFORMATION
Defibrillation remains the primary treatment for:
- Ventricular fibrillation and
- Pulseless ventricular tachycardia
CPR and supportive measures are the main treatment for asystole, and pulseless electrical activity.

KEY POINTS
1. Single shocks should be provided to allow CPR to continue in between shocks. Effective CPR raises coronary perfusion pressure and increases the likelihood of successful defibrillation.
2. Chances of successful defibrillation diminish over time.
3. Default energy level for biphasic defibrillators in 200J.
4. Ensure reversible causes of cardiac arrest (4 Hs and 4Ts) are treated and addressed sufficiently during the resuscitation
5. Document resuscitation on MR 302, Medical Emergency Record.

PRINCIPLES OF ADVANCED LIFE SUPPORT
The advanced life support algorithm is a systematic process designed to guide clinicians in the provision of care to the unconscious patient. It focuses on CPR, defibrillation, airway management, correcting reversible causes of cardiac arrest as well as post-resuscitation care. The algorithm is provided below.12
DEFIBRILLATION
In this health service, only anaesthetists, and anaesthetic registrars who are ALS2 proficient are permitted to manually defibrillate patients. The rationale for this is that cardiac arrest occurs infrequently, therefore it is unlikely that defibrillation skills can be maintained outside the field of anaesthesia.

SHOCKABLE RHYTHMS – VF OR PULSELESS VT
Defibrillation is the definitive treatment for VF and pulseless VT. If the patient is monitored in a fine ventricular fibrillation, then it may be advisable to continue CPR for another 2 minutes to improve coronary perfusion, increase the voltage of the rhythm to coarse VF and increase the likelihood of restoring sinus rhythm. Rhythm analysis should occur every 2 minutes throughout the resuscitation, prior to delivering the next shock if indicated. IV Adrenaline 1mg should be administered after the 2nd shock, and then every second cycle during the resuscitation. IV Amiodarone 300mg should be administered after the 3rd shock. 12
NON-SHOCKABLE RHYTHMS – ASYSTOLE OR PEA

Non-shockable rhythms include asystole and pulseless electrical activity (PEA). Defibrillation is not indicated for the management of these arrhythmias and CPR and other supportive measures should be continued. Rhythm should be checked every 2 minutes. IV Adrenaline 1mg should be given immediately when IV access is established. Administer IV adrenaline 1mg every 2nd cycle subsequently. 12

REVERSIBLE CAUSES OF CARDIAC ARREST

Physiological causes known to exacerbate or precipitate cardiac arrest should be addressed throughout the resuscitation. These are known as the 4H’s and 4T’s.

<table>
<thead>
<tr>
<th>4 H’S</th>
<th>4 T’S</th>
</tr>
</thead>
<tbody>
<tr>
<td>HYPOXIA</td>
<td>THROMBOSIS</td>
</tr>
<tr>
<td>HYPOVOLEMIA</td>
<td>TAMPOANE</td>
</tr>
<tr>
<td>HYPO / HYPERKALEMIA / HYPERMAGNESEMINA</td>
<td>TENSION PNEUMOTHORAX</td>
</tr>
<tr>
<td>HYPO / HYPERTHERMIA</td>
<td>TOXINS</td>
</tr>
</tbody>
</table>

HYPOXIA

Administer 15L/min of oxygen through the bag and mask. Consider airway adjuncts such as an LMA, or ETT. Once a definitive airway is inserted, ventilate patient at a rate of 10 breaths per minute. Consider performing an arterial blood gas to determine arterial PaO₂ and pH. 12

HYPOVOLEMIA

Prime and run through a 1 L bag of normal saline or compound sodium lactate if hypovolemia is suspected. Ensure patient has 2 large bore cannulae sited above the level of the decubitus. If unable to obtain IV access, utilise the intraosseous route. An intraosseous gun is available on the theatre resuscitation trolley. Control the source of bleeding if haemorrhaging, and administer uterotonics for obstetric patients as required.

HYPO / HYPERKALEMIA / HYPERMAGNESEMINA

Potassium levels can be obtained through an ABG during a resuscitation. If required send off a formal U&E to check electrolyte levels. Do not wait for results before treating suspected electrolyte disturbances. Both elevated potassium and magnesium levels may be reversed with intravenous calcium.

HYPOTHERMIA

Hypothermia is classified as a core temperature < 35 degrees. Warm blankets and warm air blankets can assist in elevating temperature. Ensure women birthing in water have regular temperature checks.
THROMBOSIS
Hospitalised patients are at a higher risk of developing VTE’s. Check medication chart for thromboprophylaxis and assess clinical history to determine if VTE is a likely cause of cardiac arrest. Pregnant patients with intact membranes are at risk of an AFE when the membranes rupture.

TAMMOPANDE
Tamponade is an unlikely cause of cardiac arrest outside the setting of trauma or cardiac surgery.

TENSION PNEUMOTHORAX
Tension pneumothorax is also an unlikely cause of cardiac arrest outside the setting of trauma.

TOXINS
Toxins can include bites, stings, medications and illicit drugs. Clinical history may reveal a history of substance abuse. Administer reversal agents as appropriate. Do not administer naloxone to pregnant women unless absolutely necessary as this can be harmful to the fetus.

MEDICATION AND FLUIDS
The ARC has de-emphasised the role of drugs in a cardiac arrest. The medications that may be utilised are predominately adrenaline and amiodarone.

Adrenaline
Adrenaline causes vasoconstriction which may increase the perfusion of blood to the myocardium and cerebrum. Evidence is insufficient to recommend an optimal dose of vasopressors in cardiac arrest. However, a dose of 1mg IV of 1:1000, or 10mls of 1:10 000 is not harmful, and can be given at 3-4 minutely intervals during a cardiac arrest. Adrenaline is given immediately in cases of asystole and PEA, or after the second shock in the setting of VT / VF. Flush well with 20mls of normal saline after administration. Lift arm up to the level of the heart to assist medication delivery.

Amiodarone
Amiodarone is an anti-arrhythmic medication that alters the permeability of calcium and potassium leading to a prolonged membrane repolarisation phase, resulting in membrane stability. It should only be administered in the setting of shockable rhythms, and a dose of 300mg (neat) should be given IV.

POST RESUSCITATION CARE
After the return of spontaneous circulation, post-resuscitation care commences. It is important that care continues to be provided in a structured way so that the patient can continue to improve. The ABCDE approach as discussed in recognising and
responding to clinical deterioration is a useful approach to apply to post resuscitation care. It is important to take this opportunity to evaluate what has been done, and what still needs to be done. Documentation should be reviewed and updated to reflect the care that has been provided and to formulate an ongoing care management plan.

Consider the following:

AIRWAY
Repeat ABG to assess acid base balance and evaluate oxygenation. Provide supplemental oxygen if \(\text{SaO2} < 94\% \)

BREATHING
Assess breathing and determine if patient has sustained fractured ribs or severe bruising during CPR which may make breathing difficult, painful, and potentially cause a pneumothorax or flail chest.

CIRCULATION
Continue to monitor blood pressure and pulse. Cardiac monitoring should be undertaken, along with a 12 lead ECG. Consider the need for an arterial line and central IV access. The patient should be transferred to a higher level of care for closer observation such as a HDU, ICU or CCU depending upon their clinical condition.

DISABILITY
Monitor patient’s neurological status and blood glucose level at regular intervals. Patients whose conscious state does not improve after resuscitation should be transferred to a tertiary adult hospital where they can undergo percutaneous angiography if required and then be actively cooled for neuroprotection.

EXPOSURE
Restore the patient’s dignity and ensure they are adequately clothed. Provide reassurance to your patient and be considerate of their emotional needs. Liaise with the family as required and answer any questions they may have.

OTHER
A formal debriefing should be provided for staff involved in resuscitation. It is useful for the resuscitation team to meet, and discuss the events that occurred to resolve any unanswered questions that they may have.

In the event of an unsuccessful resuscitation where the patient has died, refer to the coroner as appropriate.
RESUSCITATION OF THE PREGNANT WOMAN

AIM
To successfully resuscitate the pregnant woman

BACKGROUND
The physiological changes of pregnancy can pose many challenges for clinicians who are resuscitating a pregnant woman. Maternal collapse requires the resuscitation of the mother first and foremost, but also necessitates consideration of the fetus, who may or may not be able to survive if delivered quickly by perimortem caesarean section.

The rise in maternal plasma volume and red blood cells increases total blood volume by 30-50% in pregnancy. Blood flow to the gravid uterus and placenta increase by 500mL/minute when compared to the non-pregnant uterus. For this reason, it is critical to remove the placental circulation during maternal collapse, so that cardiac output in the mother can be restored. This provides the mother with the best opportunity for survival.13

PERIMORTEM CAESAREAN SECTION
A perimortem caesarean section involves the urgent delivery of the fetus by laparotomy or caesarean section, at the site of maternal collapse, without anaesthesia, while the mother is undergoing CPR. It is recommended for women who look visibly pregnant, which as a general rule is women of 20 weeks gestation or more. The predominant aim of a perimortem caesarean section is to save the mother’s life. Extraction of the fetus and placental circulation will ensure that the woman has an adequate circulating blood volume, will help to relieve aorto-caval compression and improve respiratory mechanics. CPR must continue throughout the procedure, without interruption.

Preparation for a perimortem caesarean section should be undertaken 3 minutes into the resuscitation, with knife to skin at 4 minutes, and delivery of the fetus by 5 minutes. It is important to call a Code Blue Medical and also a Code Blue Paediatric when a pregnant woman collapses. The procedure will be bloodless while maternal cardiac output is low. Once spontaneous circulation is restored, she will start to bleed.

The equipment that you will require is located in the bottom drawer of your resuscitation trolley – and this consists of a pre-packed perimortem caesarean kit. Try to keep the equipment as sterile as possible. There is no need to check fetal heart rate before or during the procedure. Neither maternal or fetal management will change as a consequence of fetal heart rate.
MATERNAL POSITIONING

Visibly pregnant women should be positioned supine for CPR while someone provides manual left uterine displacement. This can be performed by using both hands to lift the uterus to the mother’s left, and upwards towards the ceiling. If there are not enough personnel available to do this, then a 15 degree left, lateral tilt is sufficient.

MATERNAL OXYGENATION

Pregnant women will rapidly desaturate in a cardiac arrest, therefore it is essential that airway and breathing are restored quickly. Ensure 100% oxygen is administered at 15L/min using a bag and mask. Intubation of the pregnant patient is a difficult skill to master. Only a senior anaesthetist should attempt intubation during a cardiac arrest to avoid prolonged periods of apnoea. If intubation is not achieved quickly, abandon the procedure and insert a laryngeal mask airway or revert back to bag and mask ventilation.

REVERSIBLE CAUSES OF CARDIAC ARREST

Identifying and treating the 4H’s and 4T’s in pregnancy are the same as for the general adult population. A table is shown below from the most recent maternal deaths in Australia report. It categorises maternal deaths into centiles. It is worth mentioning that there were 105 maternal deaths from 2008 – 2012.\(^\text{14}\)

![Australian maternal deaths per centile 2008 -2012](chart.png)
REFERENCES (STANDARDS)

2. KEMH Clinical Guidelines: Section O&G: Standard protocols: Recognising and responding to clinical deterioration.

National Standards – 1- Care provided by the clinical workforce is guided by current best practice
2- Recognising and Responding to Clinical Deterioration
9- Legislation - Guardianship and Administration Act 1990; Civil Liability Act 2002. (This is not an exhaustive list- Search State Law Publisher for relevant Acts & see ARC Guideline 10.5 below).

Related Policies –
- OP 1706/03 Management of Cardiac Arrest; OD 0061/07 Biphasic Defibrillator Energies
- WA Health Consent to Treatment Policy 2011
- WNHS Policy 124 Clinical Deterioration

Other related documents –
- Australian Resuscitation Council (ARC) Guidelines
- ARC Guideline 10.5: Legal and Ethical Issues Related to Resuscitation (2012)

RESPONSIBILITY

<table>
<thead>
<tr>
<th>Policy Sponsor</th>
<th>Nursing & Midwifery Director OGCCU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Endorsement</td>
<td>September 2001</td>
</tr>
<tr>
<td>Last Reviewed</td>
<td>September 2014</td>
</tr>
<tr>
<td>Last Amended</td>
<td>January 2015</td>
</tr>
<tr>
<td>Review date</td>
<td>September 2017</td>
</tr>
</tbody>
</table>

Do not keep printed versions of guidelines as currency of information cannot be guaranteed. Access the current version from the WNHS website.